

Hengyang Valin Steel Tube Co.,Ltd.

(F) HYST CATALOGUE OF OCTG / LINE PIPE

HYST owns the most entire rolling mills, advanced equipment and complete product specifications.

HYST is one of the largest seamless steel tube & pipe manufacturers of OCTG and pressure vessel in China.

HYST is the biggest enterprise sharing the largest export volume of seamless steel tube & pipe in China

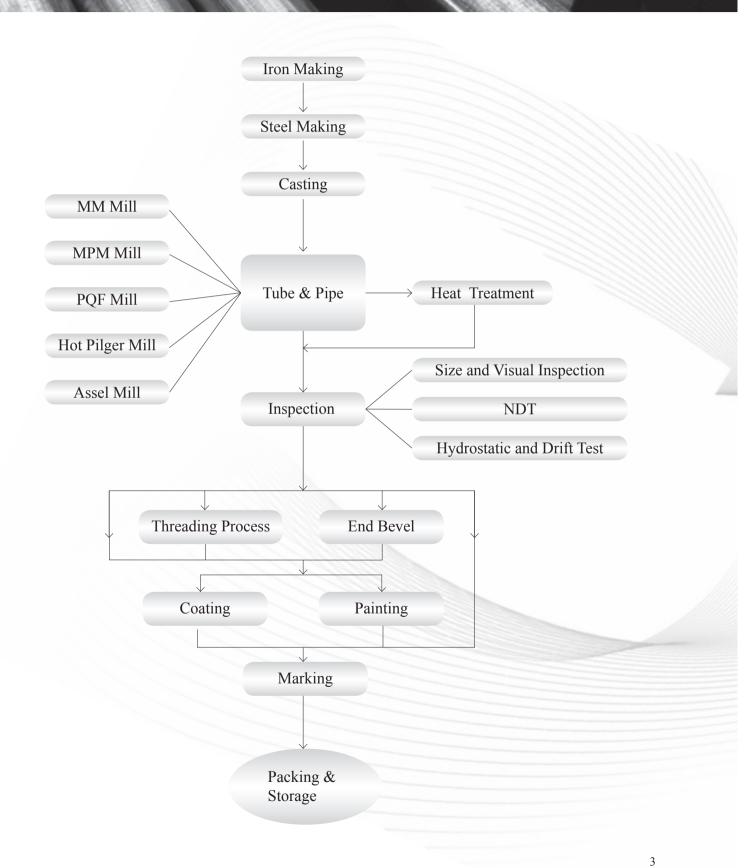
HYST is one of the main strategic suppliers of Petro China, Sinopec, CNOOC, Shell, ExxonMobil, Shanghai Boiler, Chinery Co., Ltd, Beijing Tianhai Industry Co., Ltd, ZOOMLION and Sany etc.

- O2/ Company Profile
- O3/ Process Flow Chart
- 04/ Technical Facilities
- 6/ Product Mix
- 16/ Quality Management
- 30/ Health, Safety, Environment
- 3 22/ Marketing and Service
- 4/ Product Application

Company Profile

Hengyang Valin Steel Tube Co. Ltd. (hereinafter referred to as HYST) is a subsidiary of Hunan Valin Iron & Steel Group Co., Ltd.is one of the world's top five specialized seamless steel tube & pipe enterprises with total assets of 13.4billion Yuan, which is a professional seamless steel tube & pipe manufacturing base contained iron, steel, tube & pipe and further processing. It has an annual tube & pipe capacity of 2 million MT with the most entire rolling mills, advanced equipment and complete product specifications.

HYST has now one set of 1080m³ blaster, three sets of curve caster with large, middle and small round billet sizes, five sets of tube & pipe rolling line named as φ 89 MM Mill, φ 180 PQF Mill, φ 219 Assel Mill, φ 340 MPM Mill and φ 720 Hot Pilger Mill and two sets of tube & pipe upsetting line. Among which φ 89 MM Mill, φ 180PQF Mill and φ 340 MPM Mill are entire production lines with world advanced technology and equipment. And φ 720 Hot Pilger Mill is the global current largest OD periodic mill.


HYST is a seamless steel tube & pipe manufacturer with 50 years history, whose main products are OCTG, pressure vessel and mechanical processing with various specifications and sizes under OD800MM based on hot rolling and coating of anticorrosion technology.

HYST products are famous for his professional and special reputation both in domestic and oversea market, who is the main strategic supplier of Petro China, Sinopec, CNOOC, Shell, ExxonMobil, Zoomlion and etc. It has established his stable sales channels in domestic industries of petroleum, petrochemical, automobile, boiler, coal mining and chemical etc. His export markets cover over 80 global main regions and countries and export volume has continuously kept the leading position in China seamless tube & pipe industry for many years.

HYST keeps his development together with his customers and tries to transform himself from a manufacturer to an integrated server. It has achieved centralized management of production, supply and marketing to continuously improve the service capacity and customer's feedback. It has realized the Enterprise Resource Planning Management (ERP), an efficient & convenient e-commerce platform and a sales resource planning and on-time delivery system (DSP) so that it can run his dynamic integration control of company's capital flow, logistics and information.

At a new starting point HYST's objective is to become a global first class integrated server of specialized seamless steel tube & pipe with perfect and convenient systematic service.

Process Flow Chart *

Technical Facilities

Smelting Systems

One High Quality Iron Making 180m³ Sinter+1080m³ Blast Furnace Two Curve Continuous Casters for Round Billet

φ140mm、φ150mm、φ180mm、φ220mm、φ250mm φ280mm、φ330mm

One curve Continuous Caster for Large Round Billet φ500mm、φ600mm、φ700mm、φ800mm

Tube & Pipe Production Lines

φ89m MM Mill φ38mm~φ127mm ×3.5mm~12mm φ180m PQF Mill φ73mm~φ180mm ×4mm~22mm φ219m Assel Mill φ68mm~φ260mm ×8mm~55mm φ340m MPM Mill φ139mm~φ368mm ×5mm~42mm φ720m Hot Pilger Mill φ273mm~φ720mm ×8mm~120mm

Tube End Upsetting Lines

Tubing Upsetting Line φ48.3mm ~φ114.3mm Drill tube Upsetting Line φ60.3mm ~φ127.0mm

Heat Treatment Lines

 φ 89 Tubing Heat Treatment Line φ 48.3mm ~ φ 127.0mm φ 89 Tubing Intermediate Frequency Heat Treatment Line φ 340 Casing Heat Treatment Line 1 φ 139.7mm ~ φ 376mm φ 340 Casing Heat Treatment Line 2 φ 73mm ~ φ 244.5mm φ 180 Heat Treatment Line φ 114mm ~ φ 219mm φ 720 Heat Treatment Line φ 159mm ~ φ 720mm

Threading Lines

Threading Lines \u00f660.3mm \u2012\u00f6508mm

Coating Lines

External Surface Abrasive Blasting Line $\varphi 21.0 \text{ mm}$ - $\varphi 800.0 \text{mm}$

Internal Surface Abrasive Blasting Line φ114.0 mm -φ800.0mm

O-die Extrusion Process Line φ 21.0mm- φ 406.0/114.0mm- φ 800.0mm

Winding-up Extrusion Process Line ϕ 159.0mm- ϕ 800.0mm Internal Corrosion-resistant Painting Line ϕ 114.0mm- ϕ 800.0mm

Φ340 MPM Mil

Φ720 Hot Pilger Mil

Blast Furnace

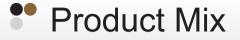
End upsetting Line

Φ180 PQF Mill

Heat Treatment Lines

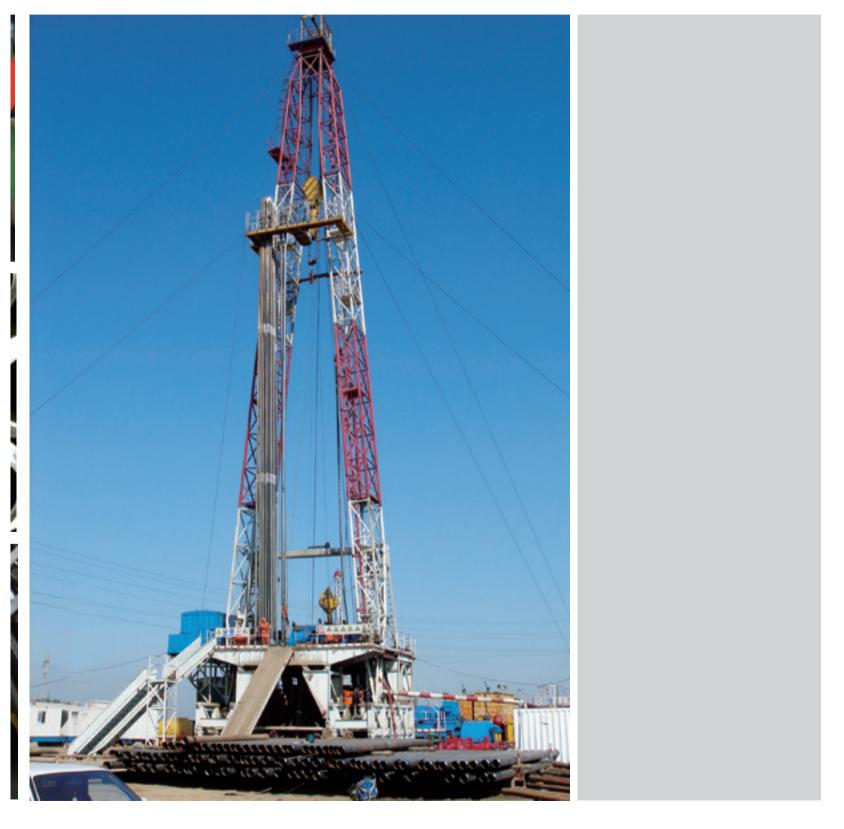
Threading Lines

Curve Casters of Round Billet


Φ89 MM Mill

Φ219 Assel Mill

5


- API Casing
- API Tubing
- Drill Tube
- Non-API OCTG Series
- Line Pipe
- HS Premium Connection
- Ocean Engineering tube & pipe
- Coating Tube & Pipe

HYST China Professional Seamless Steel Tube & Pipe Server

OCTG Product Introduction

API Casi	API Casing											
Siz	е			S	Steel Grade a	& Connection	Туре					
ODmm (inch)	WT/mm	H40	J55、K55	M65	L80-1、L80- 13Cr、R95	N80-1, N80Q	С90、Т95	C110	P110	Q125	Specification	
	5.21	S	S	S	·							
	5.69		S/B	S/B								
114.30 (4-1/2")	6.35		S/L/B	L/B	L/B	L/B	L/B		L/B			
	7.37			L/B	L/B	L/B	L/B		L/B			
	8.56								L/B	L/B		
	5.59		S	S								
	6.43		S/L/B	S/L/B								
	7.52		S/L/B	L/B	S/L/B	S/L/B	L/B		S/L/B			
127.00 (5")	9.19			L/B	S/L/B	S/L/B	L/B		S/L/B	L/B		
	11.10			L/B	L/B	L/B	L/B		L/B	L/B		
	12.14				L/B	L/B	L/B		L/B	L/B		
	12.70				L/B	L/B	L/B		L/B	L/B		
	6.20	S	S	S								
	6.98		S/L/B	S/L/B								
139.70 (5-1/2")	7.72		S/L/B	L/B	S/L/B	S/L/B	L/B		S/L/B			
	9.17			L/B	S/L/B	S/L/B	L/B		S/L/B			
	10.54			L/B	S/L/B	S/L/B	L/B		S/L/B	S/L/B		
	7.32	S	S/L/B	S/L/B							API SPEC 5CT	
168.28	8.94		S/L/B	L/B	S/L/B	S/L/B	L/B		S/L/B			
(6-5/8")	10.59			L/B	S/L/B	S/L/B	L/B		S/L/B			
	12.06				S/L/B	S/L/B	L/B		S/L/B	L/B		
	6.91	S	S	S								
	8.05		S/L/B	L/B	S/L/B	S/L/B	L/B					
	9.19			L/B	S/L/B	S/L/B	L/B		S/L/B			
177.80 (7")	10.36			L/B	S/L/B	S/L/B	L/B		S/L/B			
	11.51			L/B	S/L/B	S/L/B	L/B		S/L/B			
	12.65				S/L/B	S/L/B	L/B		S/L/B	S/L/B		
	13.72				S/L/B	S/L/B	L/B		S/L/B	S/L/B		
	8.33		S/L/B	S/L/B	L/B	L/B	L/B					
	9.52			L/B	L/B	L/B	L/B		L/B			
193.68	10.92			L/B	L/B	L/B	L/B		L/B			
(7-5/8")	12.70				L/B	L/B	L/B		L/B	L/B		
	14.27				L/B	L/B	L/B		L/B	L/B		
	15.11				L/B	L/B	L/B		L/B	L/B		
	15.88				L/B	L/B	L/B		L/B	L/B		

Siz	е			S	Steel Grade &	& Connection	Туре				
ODmm (inch)	WT/mm	H40	J55、K55	M65	L80-1、L80- 13Cr、R95	N80-1, N80Q	С90、Т95	C110	P110	Q125	Specification
	6.71		S	S	S						
	7.72	S	S/L/B	S							
	8.94	S	S/L/B	S/L/B							
219.08 (8-5/8")	10.16			S/L/B	L/B	L/B	L/B		L/B		
	11.43			L/B	L/B	L/B	L/B		L/B		
	12.70				L/B	L/B	L/B		L/B		
	14.15				L/B	L/B	L/B		L/B	L/B	
	8.94	S	S/L/B	S/L/B							
	10.03		S/L/B	S/L/B	L/B	L/B	L/B		L/B		
244.48	11.05			L/B	L/B	L/B	L/B		L/B		
(9-5/8″)	11.99			L/B	L/B	L/B	L/B		L/B	L/B	
	13.84				L/B	L/B	L/B		L/B	L/B	
	15.11				L/B	L/B	L/B		L/B		
	8.89	S/B		S/B							API SPEC 5CT
	10.16	S/B	S/B	S/B							
273.05	11.43	S/B	S/B	S/B	S/B	S/B	S/B		S/B		
(10-3/4")	12.57				S/B	S/B	S/B		S/B		
	13.84						S/B		S/B	S/B	
	15.11						S/B		S/B	S/B	
	9.65										
298.45	10.92										
(11-3/4")	12.19				S/B				S/B		
	13.06				S/B				S/B	S/B	
	8.38	S									
339.72	9.65		S/B	S/B							
(13-3/8")	10.92		S/B	S/B							
	12.19			S/B	S/B	S/B	S/B		S/B		
	13.06				S/B	S/B	S/B		S/B	S/B	
406. 40 (16")	16.66										
508.00 (20")	16.13		S/L/B								
Note:S-SC;I	L-LC;B-BC	2									

9

API Tubing

Size				Steel Gr	ade & Connec	tion Typ	e		
ODmm(inch)	W T/mm	H40	J55	L80–1、L80– 13Cr、R95	N80-1, N80Q	C90	Т95	P110	Specification
	3.18								
42.16(1.660")	3.56	N/U	N/U	N/U	N/U	N/U	N/U		
	4.85	U	U	U	U	U	U	U	-
	3.18	N/U	N/U	N/U	N/U	N/U	N/U		
	3.68	N/U	N/U	N/U	N/U	N/U	N/U		
48.26(1.900")	5.08	U	U	U	U	U	U	U	
	6.35								
	7.62								
	4.24								
	4.83								
60.32(2-3/8")	6.45								
	7.49								
	8.53								
	5.51	N/U	N/U	N/U	N/U	N/U	N/U	N/U	
	7.01			N/U	N/U	N/U	N/U	N/U	
72.02(2.7/91)	7.82			N/U	N/U	N/U	N/U	N/U	
73.02(2-7/8")	8.64				U			U	
	9.96								
	11.18	U	N	N	N	Ν	N		API
	5.49								SPEC
	6.45	N/U	N/U	N/U	N/U	N/U	N/U	N/U	5CT
	7.34	Ν	Ν	Ν	N	Ν	Ν		
88.90(3-1/2")	9.52			N/U	N/U	N/U	N/U	N/U	
	10.92								
	12.09								
	13.46								
	5.74	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
	6.65	U	U	U	U	U	U	U	
101.60(4")	8.38								
101.00(4)	10.54								
	12.70								
	15.49								
	6.88	N/U	N/U	N/U	N/U	N/U	N/U	N/U	
	8.56								
	9.65								
114.30(4-1/2")	10.92								_
	12.70								
	14.22								
	16.00								
Note: N-NU; U-E	U.								

Ps: besides above mentioned products, plain end products either

Drill Tube & Pipe

Nie	Size		Otaal Orada	Turne	Operation	
No.	OD/mm(inch)	WT/mm	Steel Grade	Туре	Specification	
1	60.32 (2-3/8")	7.11	$E_{X} X_{S} G_{S} S$	EU		
2	73.02 (2-7/8")	9.19	$E_{X} X_{S} G_{S} S$	EU		
		6.45	Е	EU		
3	88.00 (2.1/2")	9.35	$E_{X} X_{S} G_{S}$	EU		
5	88.90 (3-1/2")		11.40	Е	EU	
		11.40	$X_{\sim}G_{\sim}S$	EU		
4	101.60 (4")	8.38	$E_{X} X_{S} G_{S} S$	EU、IU		
		6.88	Е	EU、IU	API 5DP	
5	114.30 (4-1/2")	8.56	$E_{X} X_{S} G_{S}$	EU、IEU	API JDP	
		10.92	$E_{X} X_{S} G_{S}$	IU		
6	127.00 (5")	9.19	$E_{X} X_{S} G_{S} S$	IEU		
0	127.00 (3)	12.70	$E_{\times} X_{\times} G_{\times} S$	IEU		
7	120.70 (5.1/2")	9.17	$E_{\times} X_{\times} G_{\times} S$	IEU		
/	139.70 (5-1/2")	10.54	$E_{X}X_{S}G_{S}S$	IEU		
8	160 20 (6 5/0")	8.38	E、X、G、S	IEU		
8	168.28 (6-5/8")	9.19	$E_{X} X_{S} G_{S}$	IEU		

Non-API OCTG Series

Variety DO(nm) WT (mm) Stell (Pade Type Submit (Pade) Application Collapse- resistance 14.3-339.7 5.21-15.88 HS80THS80TT (HS95THS95TT) St.J.B/HSM- (HS95THS95TT) St.J.B/HSM- (HS95THS95TT) HK35.2011 or technical specification Rede-sult Layer, Deep med Coolpex Mydrogen Sulfade- resistance resistance 14.3-339.7 5.21-15.88 HS80SHS80SSHS80TS HS90SHS90SSHS90TS HS90SHS90SSHS90TS HS90SHS90SSHS90TS HS90SHS90SSHS90TS HS90SHS90SSHS90TS HS100SHS90SSHS90TS HS100SHS90SSHS90TS HS90SHS90SSHS90STS HS90SHS90SSHS90STS HS90SHS90SSHS90STS HS90SHS90SSHS90STS HS90SHS90SSHS90STS HS90SHS90SSHS90STS HS90SHS90SSHS90STS HS90SHS90SSHS90ST HS100SHS90SSHS90TS HS100SHS90SS HS90TC HS90S-1Cr HK34-2011 or technical specification HK34-2011 or technical specification Lawronneutical resistance resistance resistance functional casing 14.3-339.7 5.21-15.88 HS80.1 HS90S-3.Cr S1/J.B/HSM- HS90.1 HS90S-3.Cr HK33-2011 or technical specification I.ow-temperature favironneuti Casing For Low- tenvironneuti 14.3-339.7 5.21-15.88 HS80.1 HS901.1 HS	\/ 	Siz	ze		Connection	Onecification	Typical	
Collapse- resistance Casing 14.3-339.7 5.21-15.88 ISS01'HS90TI HS107'HS90TI HS125'HS152TI HS125'HS152TI HS125'HS152TI HS125'HS152TI HS125'HS152TI HS107'HS160TI HS125'HS150TI HS105'HS150SS'HS90TS HS905'HS90SS'HS90SS'HS90TS HS905'HS90SS'HS90TS HS905'HS90SS'HS90TS HS905'HS90SS'HS90TS HS905'HS90SS'HS90SS'HS90TS HS905'HS90SS'HS90SS'HS90TS HS905'HS90SS'HS90SS'HS90TS HS905'HS90SS'HS90SS'HS90TS HS905'HS90SS'HS90SS'HS90TS HS905'HS90SS'HS90SS'HS90TS HS905'HS90SS'HS90SS'HS90SS'HS90TS HS905'HS90SS'HS90SS'HS90SS'HS90S'HS90SS'HS90SS'HS90SS'HS90SS'HS90SS'HS90SS'HS90SS'HS90SS'HS90SS'HS90SS'HS90SS'HS90SS'HS90S'HS90SS'HS90SS'HS90S'HS90SS'HS90SS'HS90S'HS90SS'HS90S'HS90SS'HS90S'HS90S'HS90SS'HS90S'HS90	variety	DO(mm)	WT(mm)	Steel Grade		Specification		
Collapse- resistance Casing114.3-339.75.21-15.88INSIDTUIS95TT INSIDE 15.21-15.88SLBSTUIS95TT INSIDE HS10TUIS10TT HS127TUIS10TT HS10TUIS10TTSLB/HSHS. HS10TUIS10TT HS10TUIS10TTReck-salt Layer, Dote-technical specificationReck-salt Layer, Dote-technical StLB/HSML HSS0-1CReck-salt Layer, Dote-technical SpecificationReck-salt Layer, Dote-technical SpecificationReck-salt Layer, Dote-technical SpecificationReck-salt Layer, Dote-technical SpecificationReck-salt Layer, <b< td=""><td></td><td></td><td></td><td>HS80T\HS80TT</td><td></td><td></td><td></td></b<>				HS80T\HS80TT				
Collapse- resistance Casing 114.3-339.7 5.21-15.88 HISI07HSI10T HS107UHS10TT HS107UHS10TT 1/HSM-2 HK35-201 of Conduct specification Deep ' and Complex geological Condition Hydrogen Sulide- resistance Casing 114.3-339.7 5.21-15.88 HS107UHS10TT HS107UHS10TT HK302 HS90SUHS90SSHS90TS HS90SUHS90SH HS10DLCr HK34-2011 or technical specification HK34-2011 or technical specification Consing Low-temperature Environment 114.3-339.7 5.21-15.88 HK99S1 HS90SH HS90H HS90H HS90H HS10DL S/L/B/HSM- HS90H HS90H HS90H HS90H HS10DL Technical specification Low-temperature Environment Heat-resistance finvironment Thermal Recovery Well Casing Well Casing Well Casing Well Casing H14.3-339.7 5.21-15.88 HS10D HS				HS90T\HS90TT				
Instance Casing 114.3-339.7 5.21-15.88 HS110TUIS110TT HS125TUIS12STT HS140TUIS140TT HS150TUIS120TT HS150TUIS12STT 1/1SM-2 or technical specification and Complex Geolegical Condition Hydrogen Suffad- resistance Casing 1,4,3-339.7 5.21-15.88 HS100TUIS100ST HS100TS HS100TC HS100	Collapse-			HS95T\HS95TT	S/L/B/HSM-	HK35-2011		
$ \begin{array}{ c c c c } & \begin{array}{ c } & \end{array}{ c } & \end{array}{} \\ & \begin{array}{ c } & \end{array}{ c } & \rule{ c } & \end{array}{ c } & \rule{ c } & \rule{ c } & \rule{ c } & \rule{ c } & \end{array}{ c } & \rule{ c } & \end{array}{ $	resistance	114.3~339.7	5.21~15.88	HS110T\HS110TT			and Complex	
Index International Internatione International International Interna	Casing			HS125T\HS125TT			Geological Condition	
Hydrogen Sulfide Casing Casing For Casing For Lenormical Anti-CO; Eenonmical Anti-CO; Casing For Lenormical Anti-CO; Temperature Environment 14.3-339.7 5.21-15.88 HS805/HS805S/HS80TS HS1007S 5.21-15.88 HS805/HS805S/HS90TS HS1007S 5.21-15.88 HK34-2011 (JFK)HSM-2					HS140T\HS140TT			
Hydrogen Suffice- Casing 14.3-339.7 5.21-15.88 HS90S/HS90SS/HS90TS (HS100SHS) (HS100SHS) (HS100SHS) (HS100SHS) (HS100SS) (HS10SS) (HS10SS) (HS100SS) (HS100SS) (HS10SS) (HS100SS) (HS10SS) (HS10				HS150T\HS150TT				
Hydrogen Sulfide resistance Casing For Low- Temperature Environment 14.3-339.7 5.21-15.88 HS955/HS95SS/HS95TS HS100TS 5.21-15.88 HS905/HS90SS/HS90SS (HS900TS) HS100TS 5.21-15.88 HS905/HS90SS/HS90SS (HS900TS) HS100TS 5.1/J/HSM- HS901Cr J/HSM-2 J/HS4-2011 (or technical specification HK4-2011 (or technical specification Hydrogen Sulfide Environment Feconomical Anti-CO2 Casing For Low- Temperature Environment 114.3-339.7 5.21-15.88 HS90S-3Cr (HS90S-3Cr) 5.1/J/H/HSM- (HS100S-3Cr) J/J/B/HSM- (HS90L HK33-2011 or technical specification CO ₂ Environment Casing For Low- Temperature Environment 5.21-15.88 HS90L S/J/B/HSM- (HS90L HK32-2011 or technical specification CO ₂ Environment Thermal Recovery Well Casing 114.3-339.7 5.21-15.88 HS90H J/HSM-2 HK29-2011 or technical specification Heav-Oil and environment Thermal Well Casing 114.3-339.7 5.21-15.88 HS95H J/HSM-2 HK36-2011 or technical specification Heav-Oil and specification Deep Well Casing 114.3-339.7 5.21-15.88 HS100 S/J/B/HSM- (HS80-13Cr HK36-2011 or technical specification perforating gan specification Perforation Casing				HS80S\HS80SS\HS80TS	_			
Hydrogen Sulfide- resistance Casing 14.3-339.7 5.21-15.88 HS100S1HS1100SN HIS100TS HS100FIS1101SSN HS100TC S/L/B/HSM 1/HSM-2 HK34-2011 ortechnical specification HK34-2011 ortechnical specification HK34-2011 ortechnical specification Hydrogen Sulfide Environment Casing For Casing For Casing For Casing For Casing For Casing For Casing For Environment 14.3-339.7 5.21-15.88 HS805-3Cr HS100-3Cr HS100-3Cr 5/L/B/HSM 1/HSM-2 HK33-2011 ortechnical specification CO_2Environment Casing For Casing For For Casing For Casing For Casing For Casing For Casing For Casing For Casing For For Casing For Casing For For Casing				HS90S\HS90SS\HS90TS	_			
Hydrogen Sulfide, resistance Casing 114.3-339.7 (Casing 5.21~15.88 HS100TS (HS10F) (HS90-1Cr) HS90-1Cr S/L/B/HSM, 1/HSM-2 HK34-2011 or technical specification HK34-2011 or technical specification Hydrogen Sulfide Environment Economical Anti-CO; Casing 14.3-339.7 5.21~15.88 HS905-3Cr HS905-3Cr S/L/B/HSM, 1/HSM-2 HK33-2011 or technical specification HK33-2011 or technical specification CO; Environment Casing For Low- Temperature Environment 14.3-339.7 5.21~15.88 HS90L HS90L S/L/B/HSM, 1/HSM-2 HK33-2011 or technical specification CO; Environment Thermal Recovery Well Casing 14.3-339.7 5.21~15.88 HS90L HS100L S/L/B/HSM, 1/HSM-2 Technical specification Low-temperature Environment Thermal Recovery Well Casing 14.3-339.7 5.21~15.88 HS90H HS100H S/L/B/HSM, 1/HSM-2/HSM, 1/HSM-2/HSM Heavy Oil and Heat-resistance Environment Deep Well Casing 114.3-339.7 5.21~15.88 HS140 S/L/B/HSM, 1/HSM-2 HK36-2011 or technical specification perforating gun specification Deep Well Casing 6.3-127 5-15 110ksi S/L/B/HSM, 1/HSM-2 HK36-2011 or technical specification perforating gun or techni					_			
Subjection Subjection Subjection Subjection High 2011 or technical specification Hydrogen Subfide Instance Casing 14.3-339.7 Casing 5.21-15.88 HS1105:HS110SS: HS101-1Cr SUJB/HSM- HS801-1Cr HS42-2011 or technical specification Hydrogen Subfide Environment Economical Anti-CO, Casing For Low- temperature Environment 14.3-339.7 5.21-15.88 HS805-3Cr HS905-3Cr SUJB/HSM- HS905-3Cr HK32-2011 or technical specification HK32-2011 or technical specification CO_2Environment Casing For Low- temperature Environment 14.3-339.7 5.21-15.88 HS80L HS90L SUJB/HSM- HS90L HK32-2011 or technical specification Co_2Environment Thermal Recovery Well Casing 14.3-339.7 5.21-15.88 HS80L SUJB/HSM- HS90L HK29-2011 or technical specification Heavy Oil and Heat-resistance Environment Thermal Recovery Well Casing 114.3-339.7 5.21-15.88 HS10F SUJB/HSM- HS10L HK36-2011 or technical specification Heavy Oil and Heat-resistance Environment Deep Well Casing 114.3-339.7 5.21-15.88 HS10F SUJB/HSM- HS10L HK36-2011 or technical specification perforating gun Perforation Casing	Hydrogen							
$ \begin{array}{ c c c } \hline \mbox{Specification} \\ \hline \mbox$	Sulfide-	114.3~339.7	5.21~15.88	HS110S\HS110SS\		or technical		
Image: base series in the series in						specification	Environment	
Image: base in the sector of the se					-			
IddIddHS110-1CrIddIddIddIddEconomical Anti-CO2 Casing14.3-339.75.21~15.88HS80S-3Cr HS90S-3Cr HS90S-3Cr HS90S-3Cr HS90S-3Cr HS90S-3Cr7.1/B/HSM-1 1/HSM-2HK33-2011 or technical specificationCO2EnviromentCasing For Low- Temperature Environment14.3-339.75.21~15.88HS80L HS90L HS90L7.20/HSM HS90L HS90LMK39-2011 or technical specificationHC02EnviromentCasing For Low- Environment14.3-339.75.21~15.88HS90L HS90H HS110L7.2/B/HSM HS90H HS90H14.2-30/HSM HS90HHC29-2011 or technical specificationHeavy Oil and Heavy Oil and Heavy Oil and Heavy Oil and Heavy Oil and HS110H14.2-30/HSM HS90H <td< td=""><td></td><td rowspan="2"></td><td rowspan="2"></td><td></td><td></td><td></td></td<>								
$ \frac{E_{conomical Anti-CO_{1}}{Casing} \\ 114.3-339.7 \\ Casing For Low-remperature Environment } \\ \frac{C_{asing For Low-remperature Environment} \\ 114.3-339.7 \\ 114.3-339.7 \\ 114.3-339.7 \\ Recovery Well Casing \\ 114.3-339.7 \\ retring Casing \\ 114.3-339.7 \\ retring Casing \\ retring $								
$ \frac{\text{Economical Anti-CO_{2} Casing Name and Schwarz $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Economical				S/L/D/USM	HK33-2011		
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \beg$		114.3~339.7	5.21~15.88				CO ₂ Enviroment	
$ \begin{array}{c} \begin{array}{c} \mbox{Casing For}\\ \mbox{Low-Temperature}\\ \mbox{Emperature}\\ \mbox{Environment} \end{array} \end{array} \\ \begin{array}{c} 114.3-339.7 \\ \mbox{I} \\ \mbox{L} \\ 5.21-15.88 \end{array} \\ \begin{array}{c} \mbox{S1-15.88} \\ \mbox{HS90L} \\ \hline \mbox{HS10L} \\ \hline \mbox{HS90H} \\ \hline \mbox{HS90H} \\ \hline \mbox{HS10H} \\ \hline \mbox{HS125H} \\ \hline \mbox{HS150} \\ \hline \mbox{HS155} \\ \hline \mbox{HS155} \\ \hline \mbox{HS162} \\ \hline \mbox{HS155} \\ \hline \mbox{HS162} \\ \hline HS$	Casing				_	specification		
$ \begin{array}{c} \mbox{Casing For Low-Temperature Environment} \\ \mbox{Temperature Environment} \\ Temp$								
$ \begin{array}{c} \hline \mbox{Temperature Environment} \\ \hline $					S/I/D/USM			
$ \frac{ A }{ A } = \frac{ A }{ A $	Temperature	114.3~339.7	5.21~15.88	HS95L	-			
$ \frac{\begin{tabular}{ c c c c } \hline Thermal Recovery Well Casing Well Casing Well Casing Casing Casing Tubing/casing Tubing/Casing$	Environment			HS110L				
$\begin{array}{ c c c c c c c } \hline \mbox{Inermal} \\ \mbox{Recovery} \\ \mbox{Well Casing} \end{array} & 114.3 & 339.7 \\ \mbox{Well Casing} \end{array} & 114.3 & 339.7 \\ \hline \mbox{Inermatical} \\ 5.21 & -15.88 \end{array} & \hline \\ \hline \mbox{HS110H} \\ \hline \mbox{HS110H} \\ \hline \mbox{HS125H} \\ \hline \mbox{HS150} \\ \hline \mbox{HS150} \\ \hline \mbox{HS155} \\ \hline \mbox{HS155} \\ \hline \mbox{Perforation} \\ \mbox{Casing} \end{array} & 60.3 & -127 \\ \hline \mbox{60.3 & -127} \\ \hline \mbox{60.3 & -127} \\ \hline \mbox{60.3 & -127} \\ \hline \mbox{Casing} \\ \hline \mbox{HS80-13Cr} \\ \hline \mbox{HS80-13Cr} \\ \hline \mbox{HS85-13Cr} \\ \hline \mbox{HS80-13Cr} \\ \hline \mbox{HS80-11} \\ \hline \mbox{HS90-12Cr} \\ \hline \mbox{HS80-12Cr} \\ \hline HS$				HS80H				
$\begin{array}{ c c c c c c c } \hline \mbox{Inermal} \\ \mbox{Recovery} \\ \mbox{Well Casing} \end{array} & 114.3 & 339.7 \\ \mbox{Well Casing} \end{array} & 114.3 & 339.7 \\ \hline \mbox{Inermatical} \\ 5.21 & -15.88 \end{array} & \hline \\ \hline \mbox{HS110H} \\ \hline \mbox{HS110H} \\ \hline \mbox{HS125H} \\ \hline \mbox{HS150} \\ \hline \mbox{HS150} \\ \hline \mbox{HS155} \\ \hline \mbox{HS155} \\ \hline \mbox{Perforation} \\ \mbox{Casing} \end{array} & 60.3 & -127 \\ \hline \mbox{60.3 & -127} \\ \hline \mbox{60.3 & -127} \\ \hline \mbox{60.3 & -127} \\ \hline \mbox{Casing} \\ \hline \mbox{HS80-13Cr} \\ \hline \mbox{HS80-13Cr} \\ \hline \mbox{HS85-13Cr} \\ \hline \mbox{HS80-13Cr} \\ \hline \mbox{HS80-11} \\ \hline \mbox{HS90-12Cr} \\ \hline \mbox{HS80-12Cr} \\ \hline HS$				HS90H				
Well CasingHS110HHS110HI/HSM-2/HSNspecificationEnvironment $Beep Well Casing114.3~339.75.21~15.88HS140S/L/B/HSM-1HK36-2011or technicalspecificationDeep WellDeep Well Casing114.3~339.75.21~15.88HS150S/L/B/HSM-1HK36-2011or technicalspecificationDeep WellPerforation Casing60.3~1275~15110ksiYB/T 4371-2014or technicalspecificationperforating gunPerforation Casing60.3~1275~15110ksiYB/T 4371-2014or technicalspecificationperforating gunAnti-CO2CorrosionTubing/casing5.51~14.0HS80-13CrHS80-13CrHS955-13CrAPI 5CTor technicalspecificationCO2Enviroment$		114.3~339.7	5.21~15.88					
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} & HS125H & HS125H & HS125H & HS125H & HS140 & \\ \hline \end{tabular} & HS140 & & & & \\ \hline \end{tabular} & HS150 & HS150 & HS150 & HS155 & \\ \hline \end{tabular} & HS155 & HS155 & & & \\ \hline \end{tabular} & HS155 & & \\ \hline tabula$					1/HSM-2/HSN	specification	Environment	
$ \begin{array}{c c} \hline Deep \ Well \\ Casing \\ \hline Casing \\ \hline Casing \\ \hline Casing \\ \hline Perforation \\ Casing \\ \hline 60.3 \sim 127 \\ \hline 60.3 \sim 127 \\ \hline 100 \\ \hline 5 \sim 15 \\ \hline 5 \sim 15 \\ \hline 110 \\ \hline 5 \sim 15 \\ \hline 110 \\ \hline 110 \\ \hline 125 \\ \hline $								
$\frac{\text{Deep Well}}{\text{Casing}} = \frac{114.3 \sim 339.7}{\text{Casing}} = \frac{5.21 \sim 15.88}{5.21 \sim 15.88} = \frac{\text{HS150}}{\text{HS155}} = \frac{\text{S/L/B/HSM-1}}{1/\text{HSM-2}} = \frac{\text{or technical specification}}{\text{specification}} = \frac{\text{Deep Well}}{\text{perforation}}$ $\frac{\text{Perforation}}{\text{Casing}} = \frac{60.3 \sim 127}{60.3 \sim 127} = \frac{5 \sim 15}{5 \sim 15} = \frac{110 \text{ksi}}{125 \text{ksi}} = \frac{110 \text{ksi}}{125 ksi$				HS140				
$\frac{\text{Cashig}}{\text{HS155}} = \frac{17\text{HSM-2}}{\text{specification}} + \frac{17\text{HSM-2}}$		114.3~339.7	5.21~15.88	HS150			Deep Well	
Perforation Casing60.3~1275~15110001 125ksior technical specificationperforating gunAnti-CO2 Corrosion Tubing/casing73.02~177.805.51~14.0HS80-13Cr HS95-13CrS/L/B/HSM-1/ HS955-13CrAPI 5CT or technical specificationCO2Enviroment	Casing			HS155	1/HSIVI-2	specification		
Casing $60.3 \sim 127$ $3 \sim 15$ 125ksiof technical specificationperforating gunAnti-CO2 Corrosion Tubing/casing $73.02 \sim 177.80$ $5.51 \sim 14.0$ HS80-13Cr HS95-13Cr $API 5CT$ or technical specification $API 5CT$ or technical specification $CO_2Enviroment$	Perforation							
Anti-CO2 Corrosion Tubing/casing73.02~177.805.51~14.0HS80-13Cr HS95-13CrAPI 5CT or technical specificationAPI 5CT or technical specificationCO2Enviroment		60.3~127	5~15	125ksi			perforating gun	
Anti-CO2 Corrosion Tubing/casing73.02~177.805.51~14.0HS95-13CrS/L/B/HSM-1/ HS95S-13CrAPI 5C1 or technical specificationCO2Enviroment						-r		
Anti-CO2 Corrosion Tubing/casing73.02~177.805.51~14.0HS95-13CrS/L/B/HSM-1/ HS95S-13CrAPI 5C1 or technical specificationCO2Enviroment						A DI COT		
Tubing/casing HS95S-13Cr specification		73.02~177.80	5.51~14.0			or technical	CO ₂ Enviroment	
					пъм-2		_	
				HS110S-13Cr				

Introduction

Line Pipe Specification&Application

OD: φ 21.3mm~ φ 711mm

WT: 2.8mm~59.5mm

Variety: Oil & Gas Transportation and offshore pipe line

Product Mix

	API	5L Series		HS Series	Low Temperature Series	
PSL1		PSL2	Sour & Offshore	ASTM A333/A333M		
POLI	General Service	Offshore Service	Sour Service	Service	ASTIVI A333/ A3331VI	
A/L210					Gr.3	
B/L245	BN/L245N	BNO/L245NO	BNS/L245NS	HSL245S/O	Gr.6	
X42/L290	X42N/L290N	X42NO/L290NO	X42NS/L290NS	HSL290S/O	Gr.8	
V52/L2(0	X52N/L360N	X52NO/L360NO	X52NS/L360NS	HSL360S/O		
X52/L360	X52Q/L360Q	X52QO/L360QO	X52QS/L360QS	HSL360S/O		
X56/L390	X56N/L390N	X56NO/L360NO	X56NS/L390NS	HSL390S/O		
V(0/L 415	X60Q/L415Q	X60QO/L415QO	X60QS/L415QS	HSL415S/O		
X60/L415	X60N/L415N					
X65/L450	X65Q/L450Q	X65QO/L450QO	X65QS/L450QS	HSL450S/O		
X70/L485	X70Q/L485Q X80Q/L555Q X90Q/L625Q X100Q/L690Q	X70QO/L485QO X80QO/L555QO X90QO/L625QO X100QO/L690QO	X70QS/L485QS	HSL485S/O		

Threading Grade & Specification

Steel Grade	PSL	OD/mm	WT/mm	Specification
L175P/A25P L245/B X42/L290 X52/L360 X56/L390 X60/L415 X65/L450 X70/L485	PSL1	21.3~508.0	2.8~59.5	API 5B API 5L or Technical Specification

Other Specifications of Line Pipe

GB: GB/T 9711-2012
ISO: 3183-2012,NACE MR0175/ISO 15156,
CSA: CSAZ245.1-14
KOC: KOC-MS-001 PT.1 REV.2 (2009) ,KOC-MS-018,
DNV: DNV-OS-F101-2013,
TOTAL: TOTAL GS EP PLR 201 REV.08,
And /Or Other Specification

• Premium Connection Introduction

	100		
Variety	Size	Features	Application
HSM-1	2-3/8"~13-3/8"	Improved Buttress Thread、Reverse Angle Torque Shoulder、Metallic/ Cone Seal	Deep Well、High Pressure Gas Well
HSM-2	5"~13-3/8"	Hook Thread, Reverse Angle Torque Shoulder, Tapered Metal-to-metal Seal	Deep Well、Ultra Deep Well、Extended Reach Wells、 Horizontal Well、High Pressure Gas Well and other Complex Conditions
HSN	5"~13-3/8"	API Buttress Thread, 90° Torque Shoulder	Rotating Casing Cementing, Casing Drilling, thermal Exploratory Well
HSFJ	2-7/8"~11-3/4"	Flush Joint, Hook Thread, Internal-External Shoulder, Internal-External Metal/Metallic Cone Seal	Well Repairing, Well Cementing by Small Gap
HSKS	13-3/8"~20"	Coarse Thread and Large taper Easy Stabbing Quick Running	Duct and Surface Casing

HS Series

Ocean Engineering tube & pipe

Product	Siz	ze	Steel	Specification	Features	Application
FIOUUCL	OD (mm)	WT (mm)	Grade	Specification	reatures	Application
Legs	324~720	20~85	A517 Gr.Q	ASTM A517	Using hot rolling seamless tube & pipe instead of semi-circle plate; Using low finishing deformation temperature and large deformation quantity,more tiny uniform austenite grain size; Delivered by quenching+tempering condition to make the products obtain excellent tenacity and performance stability.	Jack-up ocean oil rig
Bracing &Pipe	114.3~720	5.0~85	X52Q X65Q X70Q X80Q X90Q X100Q	API 5L	To guarantee the basic strength, toughness and welding performance of the product by the composition of relative low C and high Mn content; To increase the material toughness and performance stability by using the micro alloy strengthening principle of elements Nb and Ti.	Jack-up ocean oil rig

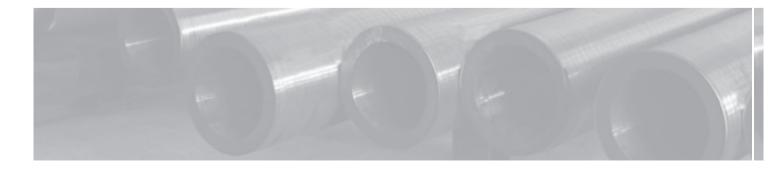
Coating Tube & Pipe

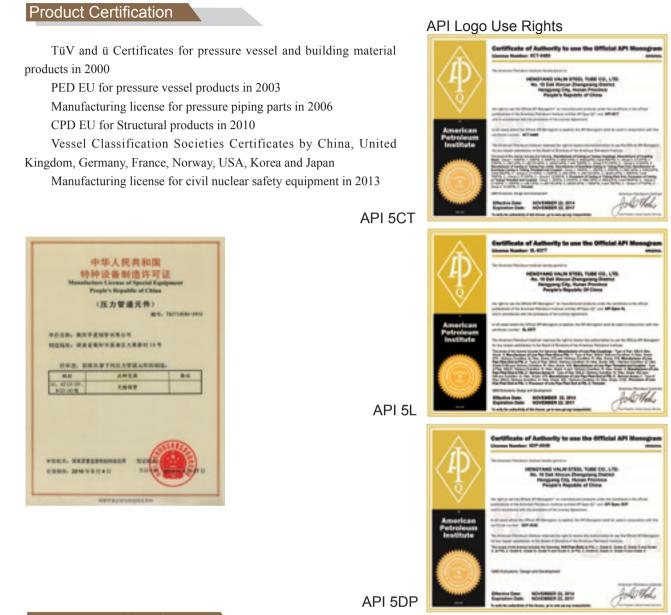
It has an annual anti-corrosive processing capacity of 120 million square meters that the coating line has equipped with high level facilities and compatible small and large sizes in China. Main products: 2PE/3PE, 2PP/3PP, FBE/double FBE, internal coating with size range from φ 800.0mm. Such products are widely used in petro, nature gas, aviation and military oil transportation and exported to Sudan, Syria, Algeria, Tadzhikistan, Kuwait etc. for oil transmission projects.

	Type of	of		Min. Thickness of coating layer					
Specification			OD	F	P		Total Thickness of		
	Anti- corrosion					Adhesives	Anti-corrosion Coating		
				General	Strong		General	Strong	
SY/T0315-2005	FBE	D	N≤800	300≥µm	400≥µm				
			Bottom Layer	250≥µm	300≥µm				
Q/CNPC38-2002	Double	DN≤800	Surface Layer	370≥µm	500≥µm				
Q	FBE		Total Thickness	620≥µm	800≥µm				
		D	N≤100				$\geq 1.8 mm$	≥2.5mm	
		100 <	< DN≤250				≥2.0mm	≥2.7mm	
GB/T23257-2009	3PE	250 <	< DN≤500	120	≥μm	170≥µm	≥2.2mm	≥2.9mm	
		500≤I	DN < 800				≥2.5mm	≥3.2mm	
		DN≥800					≥3.0mm	≥3.7mm	
		D	N≤100				≥1.8mm	≥2.5mm	
		100 <	< DN≤250				≥2.0mm	≥2.7mm	
DIN30670	2PE\3PE	250 <	< DN≤500				≥2.2mm	≥2.9mm	
		500 <	< DN≤800				≥2.5mm	≥3.2mm	
		DN	> 800				≥3.0mm	≥3.7mm	
		0	D≤100				≥1.8mm		
DIN30678	2PP\3PP	125≤	125≤OD≤250				≥2.0mm		
D1N30078	ZFF\JFP	305≤	SOD 2500				≥2.2mm		
		0	D≥600				≥2.5mm		

Other specification:CNPC standard Q/CNPC38-2002; China industry specification:SY/T0413-2002, Canada specification:CSA Z245[1].20(21)-2014; Greman DIN30670.

Online inspection equipment: Coating thickness meter, thermometer, tensile meter, pinhole tester (with pictures); Test equipment: test piece making machine, impact checking machine, tensile testing machine, hardness meter, thermostat, drying cabin, low temperature cabin etc. the anti corrosion performances such as coating thickness, peel strength, shock resistance and tensile strength, yield strength, elongation etc with pictures.


Quality Management


HYST insists on his operation concept with "to seek the survival at his quality" and Management objective with "to focus on customers". It develops the system and products certification as the propelling force and implements the quality policy by deepening the total quality management, process approach, continuous improvement of his product application and enhancement of the customers' satisfaction. It improves the product's stable quality by quality performance indicators to each individual person and standardization quality management.

System Certification

ISO9002:2000 approved in 1998; Quality Management Cert.in 1994; ISO9001:2000 Change Edition in 2001; ISO9001:2008 Change Edition in 2008; ISO10012:2003 Measurement Management System in 2008 Laboratory Cert. approved by China National Accreditation Service in 2008.

Second-part Qualification

It was approved by famous oil companies from 70 different countries such as Shell, Mobil, Total, Chevron Corporation, Alstom, Iraq, U.A.E, Petro China, Sinopec, CNOOC etc.

Inspection capability

HYST has his own Laboratory approved by China National Accreditation Service and with more than 170 sets of various inspection and test equipment. It can run his mechanical test, metallographic inspection and failure analysis of metal materials such as the metal room temperature tensile, high temperature tensile, impact, hardness, Flattening, flaring, expanding, tube & pipe ring tensile, bending, and flanging etc. It can also analysis the chemical contents of steel, alloy, iron ore, coke, coal and other auxiliary material. It has Anti-hydrogen sulfide corrosion test can be done on tube & pipe. It is available to have the measure meter, pressure gauge, thermoelectric couple, electricity, threading calibrated and set here.

Impact Tester

Metallurgical microscope



4

X-ray fluorescence spectrometer

Hydrogen Analyzer

Oxygen & Nitrogen Analyzer

Stress ring

Health, Safety, Environment

HYST always insists on his strategic development objective by "Green HYST" and it has fully reached the standard discharge on the industrial pollution sources in 2000. It has been approved by ISO14001 environmental management system certification, United Kingdom UKAS certification and OHSAS18001 occupational health and safety management system certification early in 2001 and 2002, which was one of the foregoers in the Chinese metallurgical industry. In June 2005 it was the first one published <HYST Environmental Protection White Book> in Hunan industrial enterprises.

In recent years, it has invested more than 650 million RMB to renovate and rebuild more than 70 major environmental pollution treatments and waste water recycling facilities, therefore it basically has reduced the industrial waste water to zero discharge, and the exhaust gas and noise to standard discharge. All industrial furnaces use the clean natural gas mixed with the self BF gas, harmless solid waste and reutilization is implemented at a 98% comprehensive utilization rate.

Many energy conservation and emission reduction technologies have been used such as the comprehensive utilization of BF gas, TRT (Blast Furnace Top Gas Recovery Turbine Unit), power generation, waste heat boilers, oxygen-enriched combustion, dry dust removal and sinter desulfurization etc.

In order to guarantee the effective operation of environmental protection facilities, HYST ensures a specialized environmental protection operations authority protects the sub-contract of the main facilities. The main pollutant of HYST has reached the international cleaner production level and/or the advanced domestic level and was the first one to pass the cleaner production auditing of Metallurgical industry in Hunan in September 2011.

It won "Hunan environmental century" Special Honorary Award in 2002, "Hunan environmental century" Industrial enterprise honorary award in 2007, "Hunan Two-create Model units", Hunan "garden style unit", and "Secondary safety production standardization Enterprise".

"National Advanced Unit for energy saving" in February 2013, "Advanced Unit of safe Production" and "Safety and Health Cup" awards for many years.

(HYST China Professional Seamless Steel Tube & Pipe Server

Marketing and Service

Main Customers

- CNPC
- SINOPEC
- CNOOC
- Shaanxi Yanchang Petroleum (Group) Corp.Ltd
- Shell
- Total
- Chevron Corporation
- Petroleo De Venezuela S.A.
- Aramco
- KOC
- SONATRACH
- PTT
- PDO
- SAIPEM S.P.A
- JGC
- SKE&C
- Samsung
- Petrofac
- Maersk Sealand

